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Abstract. The Landau-Zener multi-crossing relaxation in Mn;2 molecule is studied based on the tunnel
splitting obtained from the spin-coherent-state path integral including the local stray field. It is found
that the spins with larger second-order transverse anisotropic parameters will finish the relaxation before
the higher resonance is reached. Such a pre-relaxation seriously modifies the relaxation behavior at higher
resonance and makes the distributions of the second-order transverse anisotropic parameters extracted
from different resonances un-scaled. Our analysis shows that scaled distributions can be found from the
relaxation curves of k = 6 and k = 7 resonance by including the effect of pre-relaxation.

PACS. 75.45.4j Macroscopic quantum phenomena in magnetic systems — 75.50.Xx Molecular magnets

Since the first signature of quantum effect (i.e., the so-
called quantum steps) was observed in the hysteresis loop
of single-molecule magnet(SMM) Mnj5 acetate [1,2], such
a SMM has raised intense interesting in the field of molec-
ular magnetism. However, the origin of the tunnel split-
ting in Mnjs acetate is still far from being absolutely clear.
The main controversy comes from the origin of the second-
order transverse anisotropy which plays an important role
in quantum tunnelling in Mn;5 acetate. Chudnovsky and
Garanin have suggested a distribution of the second-order
transverse anisotropy due to the crystal dislocations [3],
and gained experimental support from the electronic para-
magmetic resonance (EPR) and other experimental mea-
surements [9-11]. Recently, Cornia et al. suggested that
the disorder of solvent molecules in Mnjs acetate is the
origin of the second-order transverse anisotropy [4] and del
Barco et al. shown there is not strict tetragonal symme-
try in Mnjo acetate [7]. The solvent-disorder theory was
confirmed by some recent experiments using the higher
quality of the deuterated crystal [5,6,8] and also some fur-
ther theoretical works were done [12]. The first evidence of
the distribution of the second-order transverse anisotropic
parameters in magnetic relaxation is the non-exponential
behavior which comes from a distribution of tunnel split-
ting. As a matter of fact, it has been shown that the ran-
dom local stray field raising from the environmental spins
can lead to a distribution of tunnel splitting and non-
exponential relaxation in Feg [15], but in Mnjs acetate,
the distribution of tunnel splitting is much broader [6,9]
and hence should come mainly from the distribution of
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second-order transverse anisotropic parameters, but the
random local stray field as well. In a recent experimental
analysis [6], the distribution of the second-order transverse
anisotropic parameters P(F) is extracted from the relax-
ation curve based on the tunnel splitting obtained from
the perturbation theory [3]. However, the extracted dis-
tributions P(FE) for different resonances (say, k = 6 and
k = 8) do not overlap (scale). The result looks physically
unreasonable since the distribution P(F) should be inde-
pendent of the resonance index. This is the motivation
of the present paper. We present a detail analysis on the
way of extracting P(E) from the relaxation curve basing
on the result obtained from the spin-coherent-state path
integral with the random local stray field. It is shown that
the spins with larger second-order transverse anisotropic
parameters will finish relaxation before the higher order
resonance is reached. This pre-relaxation makes both the
distribution center and width of P(E) become smaller for
higher order resonance. By including the effect of pre-
relaxation, the extracted distributions of the second-order
transverse anisotropic parameters for k = 6 and k = 7 do
overlap (scale) very well.

Up to the second-order anisotropy, the Hamiltonian of
the Mnio acetate molecule is given by

H=-DS?+E(S2—52) —gusS- (B+h), (1)

where D = 0.5483 K [6,8,9], B is the applied magnetic
field, and h is the local stray field which may originate
from the interactions between the giant spin and the en-
vironmental spins (including other giant spins or nuclear
spins) [17] and also the misalignment (or the tilt) of the
easy axis in Mnjs acetate molecule as the longitudinal field



406

is applied [6,8,9]. Due to the crystal dislocation or the
solvent disorder, the second-order transverse anisotropic
parameter E has a random distribution P(E) which can
be chosen as a Gaussian [6,8]
P(E) = (2nw?) Y2 e~ (B-Eo)*/2w? (2)

Our main interest is the Landau-Zener multi-crossing re-
laxation which is done by sweeping the longitudinal field
at a constant rate a = dB. /dt over a resonance for many
times [8,9], a method firstly developed to measure the
ground state tunnel splitting in Feg [13,14]. For a given
FE, the relaxation equation is

dM

— =—-MP 3

dn LZ, ( )
where n is the time crossing the resonance, Prz is the
Landau-Zener transition rate and in low transition rate
limit is given by

—ar A7 (Eh)/a

PLZ:].fe zakAi(E,h)/a, (4)

where ay, = 7/[2hgup(2S — k)], k is the index of the res-
onance (ie., |5, = —S) < |S, = S —k)), and A}(E,h)
is the tunnel splitting including the local transverse stray

field
Ai (E7 h) = A%O (E)'Wf (Ea h), (5)

Aio (E) can be found by the spin-coherent-state path inte-
gral with the instanton method [16,17] and the renormal-
ization factor 7,(E,h) = {cosh[2¢(E)h,] + (—1)**7*x
cos|2d(E)h;]} /2 with A =(D — E)/(D + E),

a(E) = gupmVA/[2(D — E)(1 —

ghB " d¢
di(E) = .
k( ) 2(D+E)\/O 1—)\Sin2¢—kﬁCOS¢

(7)
Mo, the

A2, (6)

By setting M(n — o0) =
solution of equation (3) is

My and M(n =0) =

M, Meq
P(E
Re= 3= [ P
< | W ey Bl Eru(E 1),
where W (h) = W(h,)W (hy) represents the distribution

of the transverse local stray field. In the present case, since
the amplitude of the sweeping field is much larger than
the strength of the local stray field and n is much larger
than 1 [8,14], we can approximately ignore the variation of
the distribution center and width with the magnetization
and W(h;)(i = x,y) will be chosen as a Gaussian with a
fixed distribution center hy and width o [15,18-21].
Using equation (8), the experimental relaxation curves
for k = 6 and k = 7 resonance can be fitted by choos-
ing appropriate distribution center and width of P(FE)
and W (h). It is found that, for k& = 6 resonance, the relax-
ation curve can be best fitted by taking Fy = 0.0225 K,
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experimental relaxation curves
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Fig. 1. Illustration of fitting the experimental relaxation
curves for k = 6 and k = 7. The solid line is the experimental
result from Figure 2a in reference [6], scatters are result from
equation (8) using different schemes discussed in the text with
distribution parameters of P(E) and W (h) shown in the figure.
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Fig. 2. The unscaled distribution of the second-order trans-
verse anisotropic parameters extracted from the relaxation
curves using a complete Gaussian distribution.

= 0.0025 K, o0 = 0.08 T and hy = 0 [22], while for
k =7, the corresponding parameters are: Fy = 0.0172 K|
w = 0.0011 K, 0 = 0.08 T and hy = 0. The fitted relax-
ation curves and the extracted P(E) are shown in Fig-
ures 1 and 2. Here we get the same problem as that of the
experimental analysis [6] based on the result from the per-
turbation theory, that is, the P(FE) extracted from k = 6
and k = 7 relaxation curve do not overlap (scale). It is
seen that both the distribution center Ey and width w
decrease as k increases. del Barco et al. attributed this
problem to “the origin of the tunnel splitting cannot only
be due to a second-order transverse anisotropy’ [6]. We
have checked this point by comparing the tunnel splitting
obtained from numerical diagonalization with the distri-
bution center of tunnel splitting extracted from the exper-
imental relaxation curves for £ = 6 and k = 8 resonance
(see Fig. 2b in Ref. [6]). It is found that the inclusion
of the higher order term like C(5% + 5%) does not help
to solve the problem, for example, by omitting the local
stray field, numerical diagonalization of the Hamiltonian
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H+ C(S% +8*) with D = 0.5483 K, E = 0.0045 K and
C = 2.2 x 1075 K [23] tells that Ag ~ 4.654 x 107® K
which is very closed to the experimentally extracted dis-
tribution center of k = 6 (i.e., 4.571 x 1078 K), while
the corresponding Ag ~ 4.632 x 107° K is nearly 2 orders
larger than the extracted distribution center of k = 8 (i.e.,
8.511 x 10~7 K). On the other hand, recent experiment
suggested that the second-order transverse anisotropy
should be the main contribution to quantum tunnelling
in Mn;2 acetate molecule [7]. Consequently some impor-
tant elements must have been ignored in extracting P(F)
from the relaxation curve for k > 6 resonance.

The physical origin is that the initial state of the
k = 7 resonance is different from that of £ = 6 resonance.
Let us scrutinize the experimental process [6,8], starting
from the negative saturated magnetization, the system is
brought to the resonance by sweeping the field to the pos-
itive resonant field and relaxation under a sweeping field
is measured. Experimental data shows there is not ob-
servable magnetization relaxation before k£ = 6 resonance
is reached [6,8], approximately the relaxation due to the
quantum tunnelling of £ < 6 resonances can be omitted,
hence the relaxation of & = 6 resonance can be considered
as contributed by the complete P(E). For k = 7 resonance,
however, the relaxation due to quantum tunnelling as the
field swept over the k = 6 resonance leads to an obvious
magnetization step (see Fig. 16 in Ref. [8]) which has im-
portant sequence. It is known that the spins with larger F
have larger tunnel splitting and thus higher Landau-Zener
transition rate. This implies that some spins with larger E
have finished quantum tunnelling before the measurement
of relaxation for k = 7 resonance begins. In other words,
the measured relaxation curve of k£ = 7 resonance is not
contributed by the complete P(E), but by an in-complete
P(E) with some larger F being cut. Accordingly, the P(F)
contributed to the relaxation of k = 7 resonance can be
expressed as

C(QFMQ)—1/2 e—(E—E0)2/2w2, E<E,,

P(E) = {0, E > E., )
where C' is the re-normalization factor to assure that
fE<EC P(E)dE =1, Ep and w are the same as extracted
from relaxation curve of k = 6 resonance. In this way, it
is found that the relaxation curve of k = 7 resonance can
be best fitted by taking Ey = 0.0225 K, w = 0.0025 K,
E.=0.018K, 0 =0.09 T and hg = 0. The result of fitting
for £ = 7 relaxation curve is shown in Figure 1 and the
extracted P(FE) is shown in Figure 3. The increase of the
distribution width of W(h) is easy to understand since h
includes contribution from the misalignment of the easy
axis, which will increase as the applied longitudinal field
increases.

By considering the pre-relaxation happened before the
k = 7 resonance is reached, the extracted P(F) from k = 6
and k = 7 resonance do overlap (scale) very well. How-
ever, as one can see form Figure 3, the value of E, seems
to be smaller than the expected one. Physically F. can
be determined from the pre-relaxation happened in k = 6
resonance. Suggest that the pre-relaxation can be effec-
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Fig. 3. The scaled distribution of the second-order transverse
anisotropic parameters extracted from the relaxation curves
using a complete Gaussian distribution (k& = 6) and a cut-
off Gaussian distribution (k = 7). The inset shows the scaled
distributions in un-renormalized case and the shade area rep-
resents the pre-relaxation part.

tively represented as sweeping over the k& = 6 resonance
for ny times, then E. can be found approximately by [15]

Prz(Eek =6,a) ~ %/W(h)dhAé(Ec,h) =1/n.

(10)
Now we show the way to find out n;. According to equa-
tion (3), one can safely set M.y, = 0 [24] and we know
that M; = 1 for k = 6, this implies that Rg = M, (k = 6),
namely Rg just represents the magnetization. Since the
magnetization is continuous for crossing from & = 6 to
k=7, we have

Mi(k =T7) = M(n1, k = 6), (11)
alternatively speaking, n; can be found from the relax-
ation curve of k = 6 resonance provided that the initial
magnetization of k = 7 resonance is known. Although the
experimental data for M;(k = 7) is not available, one can
approximately estimate it from the relaxation curve in the
low transition rate limit. Low transition rate means that
sweeping over the k£ = 7 resonance 1 time does not lead
to observable change of the magnetization, this implies
that M;(k = 7) ~ M(k = 7,n = 1). For fitting the re-
laxation curve, this approximation is reasonable since the
main contribution of the relaxation curve is from n > 1.
As illustrated in Figure 4, if we take o = 3.33 x 1072 T/s,
we have ny ~ 8, then one can find out from equation (10)
that E. ~ 0.0207 using the tunnel splitting formula in
equation (5). However, if we take o = 1.33 x 1072 T/s,
then nq ~ 148, the estimated E. is 0.01825 which is very
closed to what we have found (i.e., E. = 0.018). As a
conclusion, we can say that the extracted P(E) of k =7
resonance shown in Figure 3 is reasonable.

We have presented a detail analysis on extracting
the second-order transverse anisotropic parameters P(FE)
from the relaxation curve in Mnj» acetate molecule. It is
found that the pre-relaxation of the spins with larger F
before the relevant resonance point is reached will lead to
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Fig. 4. Illustration of how to find n; from the relaxation curves
under the low transition rate approximation.

so-called “E-cutting” effect, namely, the extracted P(E)
of higher resonance has lower distribution center and nar-
rower distribution width. This result implies that, in a
rigorous way, the exact P(FE) can only be extracted from
the relaxation curve of the kK = 0 resonance, which is al-
most impossible due to the extremely low transition rate
in Mn5 acetate molecule. It should be noted that such an
“E-cutting” effect is an important element when the re-
laxation of higher resonance is considered. As one can see
from Figure 4, the “E-cutting” effect is so serious that the
dynamical property of different resonances are controlled
by qualitatively different distributions P(E) though we
are measuring the same sample. This implies that P(F)
extracted for £ > 6 resonance is not reliable in Mnjs ac-
etate molecule.

Although we are able to extract the scaled P(FE)
from the relaxation curves of different resonances, the
origin of the P(F) is not very clear. The extracted
distribution center of k = 6, Fy = 0.0225 K, is very closed
to E = 22 mK, the prediction of dislocation theory for a
concentration of dislocation per unit cell of ¢ = 1073 [10].
However, as pointed out in the experimental analysis [6],
the relaxation curve cannot be fitted according to the
dislocation theory which predicts (E) = 0, we get the
same conclusion using the scheme proposed in the present
paper. We have also tried to fit the relaxation curve based
on the solvent-disorder theory, i.e., by adapting a discrete
distribution of E. To do this, equation (8) is re-written as

3
Re=3 b / W (h)dhexp { —ay(n/a) AZo(E:) v (Ei,h)}

(12)
where b; is the weight factor which is taken to be pro-
portional to the measured population of its correspond-
ing isomers [4,6,12], i.e., by : bg : b3 = 0.5 : 1 : 0.25
with 1 < FEy < FEs. It is found that the relaxation
curve of k = 6 can be fitted by taking F; = 0.01 K,
E>; =0.0239 K, F5 = 0.0283 K, 0 = 0.06 T and hg = 0.
By including the random local stray field, the relaxation
curve can be fitted by 3 d-functions. However, we find that
it is impossible to fit the relaxation curve with the condi-
tion F3 = 2F, which is the prediction of solvent-disorder
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theory and the extracted E’s value are also larger than the
prediction [4,12]. Probably the origin of the second-order
transverse anisotropic parameters is a “mixed result”, i.e.,
both dislocation and disorder contribute to the distribu-
tion [6], but further analysis is necessary for confirming
this point.
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